Journal of Organometallic Chemistry, 290 (1985) 219–229 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

METALLORGANISCHE LEWIS-SÄUREN

XVIII *. HYDRIDOIRIDIUM(III)-KOMPLEXE MIT DEN SCHWACH KOORDINIERTEN ANIONEN PF₆⁻ UND AICl₄⁻ UND IHRE REAKTIONEN MIT WASSER; RÖNTGENSTRUKTUREN VON $|(PPh_3)_2(CO)(Cl)(H)Ir(OH_2)|^+$ BF₄⁻ UND $(PPh_3)_2(CO)(Cl)(H)IrOPOF_2$ **

HERBERT BAUER, ULRICH NAGEL und WOLFGANG BECK* Institut für Anorganische Chemie der Universität München, Meiserstr. 1, 8000 München 2 (B.R.D.) (Eingegangen den 1. Februar 1985)

Summary

The preparation and properties of $(Ph_3P)_2(CO)(Cl)(H)IrX$ (X = FPF₅, ClAlCl₃) are reported. The PF₆ complex reacts with water to give the difluorophosphato compound $(Ph_3P)_2(CO)(Cl)(H)IrOPOF_2$ which was characterized by X-ray structure analysis. The X-ray structure analysis of $[(Ph_3P)_2(CO)(Cl)(H)Ir(OH_2)]^+$ BF₄⁻ shows hydrogen bridges between the coordinated water and the BF₄⁻ ion forming a dimer.

Zusammenfassung

Darstellung und Eigenschaften von $(Ph_3P)_2(CO)(Cl)(H)IrX$ (X = FPF₅, ClAlCl₃) werden beschrieben. Der PF₆-Komplex reagiert mit Wasser zur Difluorophosphato-Verbindung $(Ph_3P)_2(CO)(Cl)(H)IrOPOF_2$, die durch Röntgenstrukturanalyse charakterisiert wurde. $[(Ph_3P)_2(CO)(Cl)(H)Ir(OH_2)]^+$ BF₄⁻ bildet ein Dimeres mit Wasserstoffbrücken zwischen dem koordinierten Wasser und dem BF₄⁻-Ion.

Bei der oxidativen Addition von starken Säuren HX an $(PPh_3)_2(CO)(Cl)Ir$ und ähnliche Iridium(I)-Verbindungen entstehen Iridium(III)-hydride [2]. Während Säureanionen wie Cl⁻ oder auch ClO₄⁻ [2b] relativ fest an das Iridium(III)-Atom gebunden sind, erhielten wir bei der Addition von CF₃SO₃H, C₄F₉SO₃H und (C₂H₅)₂OH⁺ BF₄⁻ an (PPh₃)₂(CO)(Cl)Ir Iridium(III)-Komplexe, die Eigenschaften von Lewis-Säuren aufweisen [3]. Auch Fluorsulfonsäure lässt sich an den Vaska-

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

^{*} XVII. Mitteilung siehe Ref. 1.

^{**} Herrn Professor Dr.Dr.h.c. Helmut Behrens zum 70. Geburtstag am 30. Mai 1985 gewidmet.

Komplex addieren [4]. Diese Säureanionen sind hier nur schwach koordiniert; sie sind ideale Abgangsgruppen und werden leicht auch durch schwache Nucleophile substituiert. Von Shriver [5], Eaborn [6] und Blake [7] und Mitarb. wurden FSO_3^- bzw. $CF_3SO_3^-$ als schwach koordinierte Liganden durch oxidative Addition der Sulfonsäuremethylester an Iridium(I)-Komplexe eingeführt.

Inzwischen konnten wir Lewis-saure Iridium(III)hydride mit den schwach koordinierten Anionen PF_6^- und $AlCl_4^-$ darstellen, gemäss:

Die spektroskopischen Daten beweisen die für 1 und 2 angegebenen Strukturen. Beide Verbindungen zeigen eine bei hohen Wellenzahlen liegende Carbonylschwingung (1: 2072 cm⁻¹; 2: 2064 cm⁻¹). Die Lage der ν (CO)-Bande ist ein Mass für den Elektronenmangel am Iridium(III)-Zentrum, der durch den schwachen Donor X⁻ verursacht wird.

Die Koordination des PF_6^- -Ions in 1 ist durch das Auftreten von vier P-F-Banden [880 (A₁), 810 (E), 734 (A₁), 488 (A₁) cm⁻¹] zu erkennen, da die Symmetrie des PF_6^- -Ions im Komplex erniedrigt wird [8]. Das ³¹P-NMR-Spektrum von 1 (in CH₂Cl₂) zeigt ein Septett bei – 143.3 ppm (¹J(P-F) 714 Hz), wie für freies PF_6^- zu erwarten ist. Dies lässt sich entweder durch Rotation oder Dissoziation des PF_6^- Liganden erklären. Auch für (π -C₅H₅)(ON)₂CrPF₆ [9] ergab sich aus dem NMR-Spektrum kein Hinweis auf Koordination des PF₆⁻-Ions.

Es gibt bisher nur wenige Beispiele, für die eine Koordination von $PF_6^$ nachgewiesen wurde. In $(Pyridin)_4M(PF_6)_2$ (M = Cu, Ni) sind die Anionen locker an das Metallion gebunden ("semikoordiniert") [10]. In den Verbindungen $(\pi$ - $C_5H_5)(CO)_3MFPF_5$ (M = Mo, W) wurde die Koordination über ein F-Atom an das Zentralmetall durch das IR-Spektrum bewiesen [8]. Ebenfalls wurde der analoge Nitrosyl-Komplex $(\pi$ - $C_5H_5)(NO)_2Cr(PF_6)$ beschrieben [9]. Koordiniertes $PF_6^$ wurde auch in einem Palladium-Komplex gefunden [11]. In einem Ag¹-Komplex ist PF_6^- über zwei Fluoratome an das Metall schwach gebunden (Ag-F: 267 pm) [12a]. In [Mo(NO)₂(PF₆)]_n tritt PF_6^- als Brücke auf [12b]. Die Koordination von AlCl₄⁻ in **2** kann nicht anhand der ν (AlCl)-Banden nachgewiesen werden, da diese von Phosphan-Banden überlagert sind. Die hohe Lage der ν (CO)-Bande bei 2064 cm⁻¹ (zum Vergleich, (PPh₃)₂(CO)(Cl)₂(H)Ir: 2024 cm⁻¹) beweist die Substitution von Chlorid durch einen wesentlich schwächeren Donor. Die Hochfeldverschiebung des Hydridwasserstoffatoms im ¹H-NMR-Spektrum (-20.75 ppm; t) weist auf eine *trans*-H-Ir-ClAlCl₃-Anordnung in **2** hin. Die Umsetzung von Chlorokomplexen mit AlCl₃ in Gegenwart eines Liganden ist eine schon lange verwendete Reaktion zur Substitution von Chlorid durch andere Nucleophile [13]. Wegen ihrer Empfindlichkeit wurden bisher nur wenige Verbindungen mit koordiniertem AlCl₄⁻ isoliert und charakterisiert [14].

Die Iridium(III)-hydride mit den schwach koordinierten Anionen X reagieren in vielen Fällen wie die Lewis-Säure $[(PPh_3)_2(CO)(Cl)(H)Ir]^+$. Nucleophile können das schwach koordinierte Anion leicht substituieren. Eine besondere Rolle spielt dabei das Wasser, da dessen vollständiger Ausschluss bei der Darstellung der Lewis-sauren Iridium(III)-Komplexe nur durch aufwendige Trocknung von Schutzgas und Lösungsmitteln möglich ist. Bei der gezielten Umsetzung des Tetrafluoroborato-komplexes (X = BF₄) mit Wasser wird der kationische Aquakomplex 3 erhalten [3].

Die Struktur von 3 konnte nun durch eine Röntgenstruktur bestätigt werden. Zwischen den Aqualiganden und den BF₄-Gegenionen werden dabei Wasserstoffbrückenbindungen O-H···F mit O-F-Abständen von 262 bzw. 286 pm gefunden, wie schon aus der Erniedrigung der ν (OH)-Frequenz und der Aufspaltung der ν (¹¹BF₄)-Schwingungen vermutet wurde [3]. Eine solche Verknüpfung von zwei Aquakomplex-Kationen über Wasserstoffbrücken mit zwei BF₄-Ionen zu Dimeren (vgl. Fig. 1, 2; Tab. 1–3) wurde in einigen Komplexen durch IR-Spektroskopie [15] und in [(acac)(η^7 -C₇H₇)Mo(H₂O)]⁺ BF₄⁻ [16] und [Re(CO)₃(Me₂NCH₂CH₂NMe₂)-(OH₂)]⁺ BF₄⁻ [17] durch Röntgenstrukturanalyse nachgewiesen. In [(PPh₃)₂(CO)₂-(H)Ru(OH₂)]⁺ BF₄⁻ · C₂H₅OH ist auch das Solvensmolekül in das System von Wasserstoffbrückenbindungen eingebaut [18]. Der Ir–O-Abstand in 3 ist mit 225 pm relativ lang, was mit dem hohen *trans*-Einfluss des Hydrid-Liganden erklärt werden kann. In [(PPh₃)₂(H)₂Ir(aceton)₂]⁺ BF₄⁻, mit den Aceton-Liganden jeweils in *trans*-Stellung zu einem Hydrid-Liganden wurden fast genauso lange Ir–O-Abstände (222, 223 pm) wie in 3 gefunden [19].

Während bei den Lewis-sauren Verbindungen mit dem gegen Hydrolyse recht stabilen BF_4^{-1} -Ion dieses durch Wasser substituiert wird, wird die Reaktivität von 1 und 2 gegenüber Wasser durch die Labilität der P-F- bzw. Al-Cl-Bindung bestimmt. Wasser reagiert bei beiden Verbindungen nicht mit dem elektrophilen Iridium(III)-Zentrum, sondern greift die um das Donoratom konkurrierende Lewis-Säure PF₅ bzw. AlCl₃ an.

Als Endprodukt der Reaktion mit Wasser entsteht aus 1 der Difluorophosphatokomplex 4, aus 2 der als Ausgangsverbindung verwendete Chlorokomplex.

Das O-koordinierte Difluorophosphat-Ion ist ein wesentlich besserer Donor als

(Fortsetzung s. S. 224)

Fig. 1. Molekülstruktur von 3; die thermischen Ellipsoide entsprechen 20% Aufenthaltswahrscheinlichkeit.

Fig. 2. Darstellung der H-Brücken in 3.

TABELLE 1

ATOMKOORDINATEN (×10⁴) UND ISOTROPE THERMALPARAMETER ($pm^2 \times 10^{-1}$) VON 3

Atom	x	у	Z	U
Ir	5020(1)	3667(1)	3475(1)	33(1) ^a
Cl	4017(2)	4547(2)	3148(1)	$48(1)^{a}$
P(1)	6081(2)	4437(1)	3070(1)	34(1) ^a
P(2)	3936(2)	2887(2)	3835(1)	36(1) ^a
C(1)	5796(6)	2930(6)	3656(4)	44(3) ^a
O(1)	6271(4)	2459(5)	3741(3)	62(3) ^a
O(2)	5178(4)	4482(4)	4172(2)	45(2) a
C(2)	6610(4)	4862(3)	2046(2)	49(3)
C(3)	6746	4738	1500	52(3)
C(4)	6495	4048	1262	53(3)
C(5)	6108	3480	1570	51(3)
C(6)	5972	3604	2116	44(2)
C(7)	6223	4294	2354	36(2)
C(8)	7170(3)	4120(4)	3916(2)	46(2)
C(9)	7943	3992	4149	52(3)
C(10)	8656	4021	3834	59(3)
C(10)	8596	4177	3786	57(3)
C(12)	7877	41/7	3054	<i>46</i> (2)
C(12)	7100	4304	3360	40(2)
C(13)	6243(4)	5857(A)	3584(2)	54(2)
C(14)	6071	5657(4) 6630	3259	54(5) 62(2)
C(15)	5556	7026	2008	66(3)
C(10)	5336	/020	3290	00(<i>3</i>)
C(17)	5214	6840	2804	38(3) 47(2)
C(18)	5380	5849	2789	47(2)
C(19)	5900	5462	3150	41(2)
C(20)	3209(4)	2/12(3)	2811(2)	50(3)
C(21)	2667	2368	2446	56(3)
C(22)	2097	1818	2622	54(3)
C(23)	2070	1611	3162	61(3)
C(24)	2612	1954	3527	50(3)
C(25)	3182	2504	3351	39(2)
C(26)	2914(4)	2819(3)	4740(3)	54(3)
C(27)	2455	3135	5160	67(3)
C(28)	2414	3934	5224	61(3)
C(29)	2832	4418	4867	56(3)
C(30)	3291	4102	4447	44(2)
C(31)	3332	3303	4384	39(2)
C(32)	4716(4)	2039(4)	4642(3)	57(3)
C(33)	5156	1406	4838	88(5)
C(34)	5272	757	4514	71(3)
C(35)	4948	742	3996	83(4)
C(36)	4509	1376	3800	63(3)
C(37)	4393	2025	4124	42(2)
B(1)	4160(3)	6355(3)	4573(2)	74(4)
F(1)	4239(4)	7061(4)	4344(3)	83(2)
F(2)	3454(5)	6332(5)	4866(3)	167(5)
F(3)	4130(5)	5808(4)	4186(3)	124(3)
F(4)	4817(5)	6220(5)	4897(4)	153(5)
H(1)	4951(39)	3101(41)	3080(26)	17(18)

^a Äquivalente isotrope U, berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

236.9(3)	Ir-P(1)	239.5(3)	
238.7(3)	Ir-C(1)	184.4(10)	
225.2(7)	Ir - H(1)	139.5(70)	
181.7(6)	P(1)-C(13)	184.1(6)	
180.9(7)	P(2)-C(25)	183.9(6)	
182.7(7)	P(2)-C(37)	181.4(7)	
114.0(13)	B(1) - F(1)	135.5(8)	
135.5(10)	B(1) - F(3)	135.5(9)	
135.5(10)			
	236.9(3) 238.7(3) 225.2(7) 181.7(6) 180.9(7) 182.7(7) 114.0(13) 135.5(10) 135.5(10)	$\begin{array}{cccc} 236.9(3) & \text{Ir}-P(1) \\ 238.7(3) & \text{Ir}-C(1) \\ 225.2(7) & \text{Ir}-H(1) \\ 181.7(6) & P(1)-C(13) \\ 180.9(7) & P(2)-C(25) \\ 182.7(7) & P(2)-C(37) \\ 114.0(13) & B(1)-F(1) \\ 135.5(10) & B(1)-F(3) \\ 135.5(10) \end{array}$	$\begin{array}{ccccccc} 236.9(3) & & Ir-P(1) & & 239.5(3) \\ 238.7(3) & & Ir-C(1) & & 184.4(10) \\ 225.2(7) & & Ir-H(1) & & 139.5(70) \\ 181.7(6) & P(1)-C(13) & & 184.1(6) \\ 180.9(7) & P(2)-C(25) & & 183.9(6) \\ 182.7(7) & P(2)-C(37) & & 181.4(7) \\ 114.0(13) & B(1)-F(1) & & 135.5(8) \\ 135.5(10) & B(1)-F(3) & & 135.5(9) \\ 135.5(10) & & \\ \end{array}$

TABELLE 2 BINDUNGSLÄNGEN IN 3 (pm)

das PF_6^{-1} -Ion. Die $\nu(CO)$ -Bande liegt daher in **4** mit 2054 cm⁻¹ deutlich bei kleineren Wellenzahlen als in **1**. Verschiedene Difluorophosphato-Komplexe, z.B. $(OC)_5MOPOF_2$ (M = Mn, Re), wurden in der Literatur beschrieben [20]. Wie bei diesen Komplexen ist die Koordination des $PO_2F_2^{-1}$ -Ions in **4** über ein O-Atom anhand der $\nu(PO)$ -Banden (1310, 1120 cm⁻¹) zu erkennen. **4** zeigt im ³¹P-NMR-Spektrum ein Triplett bei -21.0 ppm (H₃PO₄ ext. Standard, in CH₂Cl₂) und im ¹⁹F-NMR-Spektrum ein Dublett bei -77.0 ppm (CFCl₃ als ext. Standard, in CH₂Cl₂).

Die Abstände und Winkel (Fig. 3 und Tab. 4–6) im koordinierten Difluorophosphat im Kristall von 4 entsprechen völlig denen in $(OC)_3(dipyr)ReOPOF_2$ [21]; nur der Winkel Metall–O–P ist in 4 kleiner als im Rhenium-Komplex (vermutlich aus sterischen Gründen).

Cl-Ir-P(1)	89.2(1)	Cl-Ir-P(2)	89.5(1)
P(1)-Ir-P(2)	177.1(1)	Cl-Ir-C(1)	173.6(3)
P(1) - Ir - C(1)	90.1(3)	P(2)-Ir-C(1)	90.9(3)
Cl-Ir-O(2)	86.6(2)	P(1)-Ir-O(2)	84.0(2)
P(2)-Ir-O(2)	98.5(2)	C(1)-Ir-O(2)	99.7(4)
Cl-Ir-H(1)	98.8(27)	P(1) - Ir - H(1)	98.7(26)
P(2) - Ir - H(1)	79.0(26)	C(1) - Ir - H(1)	75.0(27)
O(2) - Ir - H(1)	174.0(26)	Ir - P(1) - C(7)	115.4(2)
Ir - P(1) - C(13)	113.0(2)	Ir-P(1)-C(19)	112.6(2)
Ir-P(2)-C(25)	116.3(2)	Ir-P(2)-C(31)	116.7(2)
Ir - P(2) - C(37)	108.5(2)	Ir - C(1) - O(1)	176.3(9)
P(1)-C(7)-C(2)	120.1(2)	P(1)-C(7)-C(6)	119.9(2)
P(1)-C(13)-C(8)	119.2(2)	P(1)-C(13)-C(12)	120.8(2)
P(1)-C(19)-C(14)	120.1(2)	P(1)-C(19)-C(18)	119.8(2)
P(2)-C(25)-C(20)	121.4(2)	P(2)-C(25)-C(24)	118.5(2)
P(2)-C(31)-C(26)	119.9(2)	P(2)-C(31)-C(30)	120.1(2)
P(2)-C(37)-C(32)	120.3(2)	P(2)-C(37)-C(36)	119.2(2)
F(1) - B(1) - F(2)	109.5(6)	F(1)-B(1)-F(3)	109.5(5)
F(2) - B(1) - F(3)	109.5(6)	F(1)-B(1)-F(4)	109.5(6)
F(2) - B(1) - F(4)	109.5(6)	F(3)-B(1)-F(4)	109.4(6)

TABELLE 3 BINDUNGSWINKEL IN 3 (Grad)

Fig. 3. Molekülstruktur von 4; die thermischen Ellipsoide entsprechen 20% Aufenthaltswahrscheinlichkeit.

Experimenteller Teil

Die Umsetzungen wurden in Schlenkrohren unter trockenem Argon durchgeführt. Die Lösungsmittel waren sorgfältig getrocknet. Zur Arbeitstechnik vgl. [22].

Carbonylchlorohexafluorophosphatohydridobis(triphenylphosphan)iridium(III) (1)

0.33 g (PPh₃)₂(CO)(Cl)Ir [23] (0.42 mmol) werden unter Schutzgas in ein Teflonrohr eingewogen, das zuvor durch Erhitzen und Abkühlen im Argon-Strom von anhaftendem Wasser befreit worden ist. Nach Suspendieren in 5 ml CH₂Cl₂ werden 0.09 ml HPF₆-Etherat (0.5 mmol) (Fa. Columbia, Organic Chemicals, Atlanta/USA) zugegeben und 2 h gerührt. Durch Einrühren der nahezu farblosen Lösung in 20 ml n-Pentan wird ein farbloser Niederschlag ausgefällt. Dieser wird abzentrifugiert, zweimal mit je 10 ml n-Pentan gewaschen und 4 h i.Hochvak. getrocknet. (Gef.: C, 47.4; H, 3.97; C₃₇H₃₁ClF₆IrOP₃ ber.: C, 48.0; H, 3.37%; Molmasse 926.2). IR: 2072 (CO), 880, 810, 734, 488 (PF), 328 (IrCl) cm⁻¹.

Carbonylchlorohydridotetrachloroaluminatobis(triphenylphosphan)iridium(III) (2)

0.73 g (PPh₃)₂(CO)(Cl)₂(H)Ir [24] (0.97 mmol) und 0.15 g Aluminiumtrichlorid (1.1 mmol) werden in ein ausgeheiztes Schlenkrohr eingewogen und 10 ml absolutiertes CH₂Cl₂ zugegeben. Beim Rühren entsteht aus der farblosen Suspension innerhalb von 10 Min eine klare Lösung. Durch Zugabe von 20 ml n-Pentan wird ein farbloser Niederschlag ausgefällt. Dieser wird abzentrifugiert, mit 10 ml n-Pentan gewaschen und 4 h i. Hochvak. getrocknet. (Gef.: C, 46.0; H, 3.70; C₃₇H₃₁AlCl₅IrOP₂ ber.: C, 46.8; H, 3.29%; Molmasse 950.1) IR: 2064 (CO), 2280

Atom	x	У	2	U	
Ir	2678(1)	1940(1)	2424(1)	38(1) ^a	
P(1)	1650(3)	3100(2)	1390(1)	$39(1)^{a}$	
C(1)	- 462(6)	1965(6)	1668(2)	47(2)	
C(2)	- 1394	1476	1501	64(3)	
C(3)	-1340	1386	833	68(3)	
C(4)	- 354	1785	332	71(3)	
C(5)	578	2274	500	55(2)	
C(6)	524	2364	1168	40(2)	
C(7)	- 978(6)	5485(5)	1240(3)	46(2)	
C(8)	-1891	6876	1275	60(3)	
C(9)	-1367	7713	1471	70(3)	
C(10)	71	7158	1632	65(3)	
C(11)	984	5767	1597	59(3)	
C(12)	460	4930	1401	42(2)	
C(13)	4050(7)	1864(5)	496(3)	62(3)	
C(14)	5084	1853	- 71	72(3)	
C(15)	5060	3113	- 487	79(3)	
C(16)	4000	4385	- 337	76(3)	
C(17)	2966	4396	230	54(2)	
C(18)	2990	3136	647	47(2)	
P(2)	3557(3)	1073(3)	3496(1)	$42(1)^{a}$	
C(19)	4135(5)	-1432(7)	4454(3)	66(3)	
C(20)	3723	-2436	4923	81(3)	
C(21)	2308	-2387	4970	79(3)	
C(22)	1306	-1333	4548	76(3)	
C(23)	1718	- 329	4079	60(3)	
C(24)	3133	- 378	4032	46(2)	
C(25)	2503(7)	2049(5)	4706(3)	55(2)	
C(26)	1996	3066	5103	74(3)	
C(27)	1873	4429	4808	80(3)	
C(28)	2257	4777	4115	81(3)	
C(29)	2763	3760	3717	68(3)	
C(30)	2886	2396	4012	46(2)	
C(31)	6229(7)	1164(5)	3602(3)	64(3)	
C(32)	7758	684	3524	78(3)	
C(33)	8616	- 538	3271	77(3)	
C(34)	7945	-1280	3097	71(3)	
C(35)	6416	- 801	3176	57(3)	
C(36)	5558	421	3428	45(2)	
cì	296(3)	2988(3)	3000(1)	59(1) ⁴	
P(3)	3046(3)	-1141(3)	2238(1)	$59(1)^{a}$	
O(1)	2132(6)	130(6)	2503(3)	$52(3)^{a}$	
O(2)	4586(8)	-1546(10)	2061(6)	$120(6)^{a}$	
F(3)	2381(10)	-1110(10)	1632(5)	149(6) "	
F(4)	2674(11)	-2312(8)	2692(5)	164(6) ^a	
C(37)	4556(10)	1241(10)	1996(4)	49(5) ^{<i>a</i>}	
O(3)	5697(8)	939(8)	1719(4)	$76(4)^{a}$	
Cl(1)	5719(7)	4515(5)	2364(3)	199(4) <i>a</i>	
Cl(2)	5959(7)	5274(7)	3558(3)	199(4) <i>"</i>	
C(38)	6534(21)	5243(21)	2718(6)	149(7)	

TABELLE 4

ATOMKOORDINATEN (×10⁴) UND ISOTROPE THERMALPARAMETER ($pm^2 \times 10^{-1}$) VON 4

^a Äquivalente isotrope U, berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

	u ,			
Ir-P(1)	237.3(2)	Ir-P(2)	236.5(2)	
Ir-Cl	238.1(2)	Ir-O(1)	220.1(8)	
Ir-C(37)	183.9(8)	P(1)-C(6)	182.3(8)	
P(1) - C(12)	182.0(5)	P(1)-C(18)	182.5(6)	
P(2)-C(24)	181.9(7)	P(2)-C(30)	181.3(6)	
P(2)-C(36)	182.7(7)	P(3)-O(1)	145.6(7)	
P(3)-O(2)	142.1(8)	P(3) - F(3)	152.9(12)	
P(3) - F(4)	149.9(10)	C(37)-O(3)	112.5(11)	
Cl(1)-C(38)	171.4(27)	Cl(2)-C(38)	171.4(13)	

TABELLE 5 BINDUNGSLÄNGEN IN 4 (pm)

(IrH), 436 (AlCl) cm⁻¹. ¹H-NMR: -20.75 ppm (IrH; ²J(³¹P-H) 11.3 Hz), 7.5 ppm (Ph).

Aquacarbonylchlorohydridobis(triphenylphosphan)iridium(III)-tetrafluoroborat (3)

Eine gesättigte Lösung von $(PPh_3)_2(CO)(Cl)(H)Ir(FBF_3)$ [3] in CH_2Cl_2 wird in einem Gefäss stehengelassen, das mit einem Gummistopfen verschlossen ist. Beim langsamen Eindiffundieren von Wasser und Abdunsten des Lösungsmittels fallen farblose Kristalle aus. Diese konnten für eine Röntgenstrukturbestimmung verwendet werden.

Carbonylchloro(difluorophosphato)hydridobis(triphenylphosphan)iridium(III) (4)

Setzt man festes $(PPh_3)_2(CO)(Cl)(H)Ir(FPF_5)$ oder eine Lösung desselben in CH_2Cl_2 einer feuchten Atmosphäre aus, so bildet sich 4. Aus einer gesättigten Lösung von 1 fallen dabei farblose Kristalle aus, die für eine Röntgenstrukturbe-

TABELLE 6

BINDUNGSWINKEL IN 4 (Grad)

$\overline{P(1)-Ir-P(2)}$	172.6(1)	P(1)-Ir-Cl	88.2(1)	
P(2)-Ir-Cl	87.2(1)	P(1)-Ir-O(1)	93.0(2)	
P(2) - Ir - O(1)	92.6(2)	Cl-Ir-O(1)	86.8(2)	
P(1)-Ir-C(37)	92.8(3)	P(2)-Ir-C(37)	91.3(3)	
Cl-Ir-C(37)	175.2(4)	O(1)-Ir-C(37)	97.8(4)	
Ir - P(1) - C(6)	115.0(2)	Ir - P(1) - C(12)	111.6(2)	
Ir - P(1) - C(18)	114.8(2)	P(1)-C(6)-C(1)	119.2(1)	
P(1)-C(6)-C(5)	120.7(1)	P(1)-C(12)-C(7)	120.8(2)	
P(1)-C(12)-C(11)	119.1(2)	P(1)-C(18)-C(13)	118.5(2)	
P(1)-C(18)-C(17)	121.5(2)	Ir - P(2) - C(24)	116.6(3)	
Ir - P(2) - C(30)	113.1(2)	Ir-P(2)-C(36)	112.1(2)	
P(2)-C(24)-C(19)	120.8(2)	P(2)-C(24)-C(23)	118.7(2)	
P(2)-C(30)-C(25)	120.0(2)	P(2)-C(30)-C(29)	120.0(2)	
P(2)-C(36)-C(31)	120.6(2)	P(2)-C(36)-C(35)	119.4(2)	
O(1) - P(3) - O(2)	122.1(6)	O(1) - P(3) - F(3)	108.3(4)	
O(2) - P(3) - F(3)	108.3(6)	O(1)-P(3)-F(4)	107.4(5)	
O(2) - P(3) - F(4)	112.1(5)	F(3)-P(3)-F(4)	95.4(7)	
Ir - O(1) - P(3)	127.0(4)	Ir-C(37)-O(3)	173.5(10)	
Cl(1)-C(38)-Cl(2)	114.2(13)			

TABELLE 7 KRISTALL-DATEN VON 3 UND 4 ^a

	3	4
Formel	$C_{37}H_{33}BClF_4IrO_2P_2$	$C_{37}H_{31}ClF_2IrO_3P_3 \cdot xCH_2Cl_2$
MW	886.1	967.2
a (pm)	1615.26 (49)	1013.12 (21)
<i>b</i> (pm)	1731.57 (65)	1075.61 (36)
c (pm)	2493.14 (90)	2063.66 (47)
$V(nm^3)$	6.973	1.949
α (°)	90	74.80(2)
β (°)	90	77.80(2)
γ (°)	90	64.70(2)
Ζ	8	2
$\rho_{\rm ber}/\rho_{\rm exp}$ (g/ml)	1.688/1.69(1)	1.648/-
Raumgruppe	Pbca (Nr. 61)	<i>P</i> 1 (Nr. 2)
Absorption (cm^{-1})	40.3	37.8
Kristallgrösse (mm ³)	$0.2 \times 0.4 \times 0.4$	$0.2 \times 0.3 \times 0.4$
	Absorptionskorrektur durch	keine Absorptionskorrektur
	ψ -Scan mit 8×36 Punkten	aus technischen Gründen
2ϑ-Bereich (°)	4-50 (alle Indices positiv)	4-41.5 (ganze Schale)
Reflexe gemessen	6776	8110
unabhängige beobachtete		
Reflexe $I > 2\sigma(I)$	4335	3835
Parameter	161	195
R-Wert	0.055	0.048

^{*a*} Alle Wasserstoffatome bis auf H(1) in 3 wurden in berechnete Lagen eingesetzt und nicht verfeinert. Alle Phenylgruppen wurden als regelmässige Sechsecke behandelt, das BF_4 -Ion in 3 als regulärer Tetraeder. Im Methylenchlorid in 4 wurden die beiden C-Cl Bindungen als gleich lang gesetzt.

stimmung geeignet waren. Auch beim Rühren der Reaktionslösung bei der Darstellung von 1 in Glasgefässen bildet sich langsam 4. IR: 2054 (CO), 2270 (IrH), 1310, 1120 (PO), 840 (PF), 318 (IrCl) cm⁻¹.

Kristallstrukturbestimmung von 3 und 4

Nicolet R3-Diffraktometer: SHELXTL Programmsystem. Die Kristalle wurden mit Araldit in ein Markröhrchen eingeklebt; das Röhrchen wurde anschliessend abgeschmolzen. Kristall-Daten von 3 und 4 sind in Tab. 7 enthalten *.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Förderung unserer Arbeiten.

Literatur

- 1 XVII. Mitteilung: W. Beck, K. Raab, U. Nagel und W. Sacher, Angew. Chem., im Druck.
- 2 (a) L. Vaska und J.W. DiLuzio, J. Am. Chem. Soc., 84 (1962) 679; (b) H. Singer und G. Wilkinson, J.

^{*} Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 51235, der Autoren und des Zeitschriftenzitats angefordert werden.

Chem. Soc. A, 2516 (1968); (c) J.A. van Doorn, C. Masters und C. v.d. Woude, J. Chem. Soc., Dalton Trans., (1978) 1213.

- 3 B. Olgemöller, H. Bauer, H. Löbermann, U. Nagel und W. Beck, Chem. Ber., 115 (1982) 2271.
- 4 G. Garzon, Ecletica Quim., (1979) 29.
- 5 D. Strope und D.F. Shriver, Inorg. Chem., 13 (1974) 2652.
- 6 C. Eaborn, N. Farrell, J.L. Murphy und A. Pidcock, J. Chem. Soc., Dalton Trans., (1976) 58.
- 7 D.M. Blake, J. Chem. Soc., Chem. Commun., (1974) 815; L.R. Smith und D.M. Blake, J. Am. Chem. Soc., 99 (1977) 3302.
- 8 W. Beck und K. Schloter, Z. Naturforsch. B, 33 (1978) 1214.
- 9 F.J. Regina und A. Wojcicki, Inorg. Chem., 19 (1980) 3803.
- 10 S.A. Bell, J.C. Lancaster und W.R. McWhinnie, Inorg. Nucl. Chem. Lett., 7 (1971) 405; H.G. Mayfield Jr. und W.E. Bull, J. Chem. Soc. A, (1971) 2279; R.M. Morrison und R.C. Thompson, Can. J. Chem., 60 (1982) 1048.
- 11 K. Isobe, K. Nanjo, Y. Nakamura and S. Kawaguchi, Chem. Lett., 1193 (1979).
- 12 (a) Y. Yamamoto, K. Aoki und H. Yamazaki, Inorg. Chim. Acta, 68 (1982) 75; (b) P. Legzdins und J.C. Oxley, Inorg. Chem., 23 (1984) 1053.
- E.O. Fischer und K. Fichtel, Chem. Ber., 94 (1961) 1200; W. Hieber und Th. Kruck, Angew. Chem., 73 (1961) 580; E.O. Fischer und K. Fichtel, Chem. Ber., 95 (1962) 2063; W. Hieber, V. Frey und P. John, Chem. Ber., 100 (1967) 1961.
- 14 Vgl. z.B. M. Pankowski, B. Demerseman, G. Bouquet und M. Bigorgne, J. Organomet. Chem., 35 (1972) 155; A. Justnes, E. Rytter und A.F. Andresen, Polyhedron, 1 (1982) 393; U. Thewalt und F. Stollmaier, J. Organomet. Chem., 228 (1982) 149.
- 15 K. Richter, E.O. Fischer und C.G. Kreiter, J. Organomet. Chem., 122 (1976) 187; K. Schloter, U. Nagel und W. Beck, Chem. Ber., 113 (1980) 3775.
- 16 M. Green, H.P. Kirsch, F.G.A. Stone und A.J. Welch, J. Chem. Soc., Dalton Trans., (1977) 1755.
- 17 E. Horn und M.R. Snow, Aust. J. Chem., 37 (1984) 1375.
- 18 S.M. Boniface, G.R. Clark, T.J. Collins und W.R. Roper, J. Organomet. Chem., 206 (1981) 109.
- 19 R.H. Crabtree, G.G. Hlatky, C.P. Parnell, B.E. Segmüller und R.J. Uriarte, Inorg. Chem., 23 (1984) 354.
- 20 C. White, S.J. Thompson und P.M. Maitlis, J. Organomet. Chem., 134 (1977) 319; F.L. Wimmer und M.R. Snow, Aust. J. Chem., 31 (1978) 267; M.A. Bennett, T.W. Matheson, G.B. Robertson, W.L. Steffen und T.W. Turney, J. Chem. Soc., Chem. Commun., (1979) 32; G. Smith, D.J. Cole-Hamilton, A.C. Gregory und N.G. Gooden, Polyhedron, 1 (1982) 97.
- 21 E. Horn und M.R. Snow, Aust. J. Chem., 33 (1980) 2369.
- 22 K. Raab, U. Nagel und W. Beck, Z. Naturforsch. B, 38 (1983) 1466.
- 23 J.P. Collman und J.W. Kang, J. Am. Chem. Soc., 89 (1967) 844.
- 24 D.M. Blake und M. Kubota, Inorg. Chem., 9 (1970) 989.